Ling, Feng and Foody, Giles M. and Ge, Yong and Li, Xiaodong and Du, Yun (2016) An iterative interpolation deconvolution algorithm for superresolution land cover
نویسندگان
چکیده
Super-resolution mapping (SRM) is a method to produce a fine spatial resolution land cover map from coarse spatial resolution remotely sensed imagery. A popular approach for SRM is a two-step algorithm, which first increases the spatial resolution of coarse fraction images by interpolation, and then determines class labels of fine resolution pixels using the maximum a posteriori (MAP) principle. By constructing a new image formation process that establishes the relationship between observed coarse resolution fraction images and the latent fine resolution land cover map, it is found that the MAP principle only matches with area-to-point interpolation algorithms, and should be replaced by de-convolution if an area-to-area interpolation algorithm is to be applied. A novel iterative interpolation deconvolution (IID) SRM algorithm is proposed. The IID algorithm first interpolates coarse resolution fraction images with an areato-area interpolation algorithm, and produces an initial fine resolution land cover map by de-convolution. The fine spatial resolution land cover map is then updated by re-convolution, back-projection and de-convolution iteratively until the final result is produced. The IID algorithm was evaluated with simulated shapes, simulated multi-spectral images, and degraded Landsat images, including comparison against three widely used SRM algorithms: pixel swapping, bilinear interpolation, and Hopfield neural network. Results show that the IID algorithm can reduce the impact of fraction errors, and can preserve the patch continuity and the patch boundary smoothness, simultaneously. Moreover, the IID algorithm produced fine resolution land cover maps with higher accuracies than those produced by other SRM algorithms.
منابع مشابه
Impervious Surface Change Mapping with an Uncertainty-Based Spatial-Temporal Consistency Model: A Case Study in Wuhan City Using Landsat Time-Series Datasets from 1987 to 2016
Detailed information on the spatial-temporal change of impervious surfaces is important for quantifying the effects of rapid urbanization. Free access of the Landsat archive provides new opportunities for impervious surface mapping with fine spatial and temporal resolution. To improve the classification accuracy, a temporal consistency (TC) model may be applied on the original classification re...
متن کاملAssessing a Temporal Change Strategy for Sub-Pixel Land Cover Change Mapping from Multi-Scale Remote Sensing Imagery
Remotely sensed imagery is an attractive source of information for mapping and monitoring land cover. Fine spatial resolution imagery is typically acquired infrequently, but fine temporal resolution systems commonly provide coarse spatial resolution imagery. Sub-pixel land cover change mapping is a method that aims to use the advantages of these multiple spatial and temporal resolution sensing ...
متن کاملSanchez-Hernandez, Carolina and Boyd, Doreen S. and Foody, Giles M. (2007) One-class classification for monitoring a specific land cover class: SVDD classification of fenland. IEEE Transactions
Remote sensing is a major source of land cover information. Commonly, interest focuses on a single land cover class. Although a conventional multi-class classifier may be used to provide a map depicting the class of interest the analysis is not focused on that class and may be sub-optimal in terms of the accuracy of its classification. With a conventional classifier, considerable effort is dire...
متن کاملInvestigating the Feasibility of Geo-Tagged Photographs as Sources of Land Cover Input Data
Geo-tagged photographs are used increasingly as a source of Volunteered Geographic Information (VGI), which could potentially be used for land use and land cover applications. The purpose of this paper is to analyze the feasibility of using this source of spatial information for three use cases related to land cover: Calibration, validation and verification. We first provide an inventory of the...
متن کاملNew adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کامل